DIPLOMARBEIT



# Diamond Detectors for Ionizing Radiation

(Diamantdetektoren für ionisierende Strahlung)

Markus Friedl Markus.Friedl@cern.ch

Österreichische Akademie der Wissenschaften Institut für Hochenergiephysik Nikolsdorfergasse 18 A-1050 Wien http://wwwhephy.oeaw.ac.at

RD42 Collaboration European Laboratory for Particle Physics (CERN) CH-1211 Geneve 23 http://www.cern.ch/RD42/

### Inhalt

### Einführung

Großbeschleuniger Halbleiterdetektoren Motivation RD42 Collaboration

### Materialphysik

Wachstum von CVD-Diamanten Materialeigenschaften Charge Collection Distance Charakterisierung

### Bestrahlung

#### **Streifen- & Pixeldetektoren**

Streifendetektoren Front-End-Elektronik für Streifen Testbeam-Ergebnisse Pixeldetektoren

### **Zusammenfassung & Ausblick**

## **Großbeschleuniger (1)**

- Zweck: Grundlagenforschung in der Teilchenphysik
- Beispiel CERN: "Large Electron Positron Collider" LEP (seit 1989)
  - Tunnel mit 27 km Umfang, ≈100 m unter Grund
  - 189 GeV (1998) Schwerpunktsenergie



## **Großbeschleuniger (2)**

- 4 LEP-"Experimente": ALEPH, DELPHI, L3, OPAL
- **DELPHI-Experiment** (Ø=11 m, L=10 m):



- Detektor konzentrisch um Kollisionspunkt bzw. Strahlrohr
- Dem Kollisionspunkt am nächsten: Vertex-Detektor
  - Silizium Streifen- & Pixeldetektoren
  - Innerster Radius r=6.3 cm
  - Genaue Teilchenspurvermessung (Ortsauflösung σ<30 μm)</li>
  - Hohe Strahlungsbelastung

### Halbleiterdetektoren

- Geladenes Teilchen durchquert Detektor
  - Erzeugung von Elektron-Loch-Paaren
  - Ladungsträger wandern im elektrischen Feld zu den Elektroden  $\rightarrow$  Strom
  - Integrierender Verstärker mißt Ladung



Größenvergleich:

|                                                        | Diamant | Si    |
|--------------------------------------------------------|---------|-------|
| Dicke D [µm]                                           | ≈500    | 300   |
| Elektrische Feldstärke E [V µm <sup>-1</sup> ]         | 1       | ≈0.2  |
| Mittlere Ladung pro minimal ionisierendem Teilchen [e] | <9000   | 32400 |

• Hohe Anforderungen an Verstärker bezüglich Rauschen

# **Motivation**

- Zukünftige Großbeschleuniger (zB. LHC am CERN mit den Experimenten CMS und ATLAS) erzeugen um Größenordnungen mehr Strahlung an den Kollisionspunkten als heutige Anlagen
- Silizium ist nach ca. 10<sup>14</sup> geladenen Hadronen (p,π,...) pro cm<sup>2</sup> durch Strahlungsschäden technisch unbrauchbar
- Erwartete Strahlendosis während 10 Jahren LHC-Betrieb im CMS-Experiment: (CMS Tracker Technical Design Report)



- Problem: 10<sup>15</sup> geladene Hadronen cm<sup>-2</sup> bei r=7 cm
- Alternativen zu Silizium:
  - GaAs (RD8)
  - CVD-Diamant (RD42)

## **RD42** Collaboration

- Gegründet im CERN 1994
- Ziel:

#### Entwicklung von strahlungsharten CVD-Diamantdetektoren zur Ortsbestimmung sowie schneller, rauscharmer Verstärkerelektronik für die Experimente am LHC

- Teilnehmende Institute (seit Gründung):
  - Institute of High Energy Physics, Vienna, A
  - University of Melbourne, Melbourne, AUS
  - University of Toronto, Toronto, CAN
  - CERN, Geneva, CH
  - Laboratory of High Energy Physics, Bern, CH
  - GSI, Darmstadt, D
  - 2<sup>nd</sup> Institute of Experimental Physics, Hamburg, D
  - MPI of Nuclear Physics, Heidelberg, D
  - CPPM, Marseille, F
  - LEPES, Grenoble, F
  - LEPSI, IN2P3/CNRS-ULP, Strasbourg, F
  - LETI (CEA), Saclay, F
  - LENS, Florence, I
  - University of Florence, Florence, I
  - University of Pavia, Pavia, I
  - University of Torino, Torino, I
  - NIKHEF, Amsterdam, NL
  - Bristol University, Bristol, UK
  - Carnegie-Mellon University, Pittsburgh, USA
  - Fermilab, Batavia, USA
  - Illinois Institute of Technology, Chicago, USA
  - Los Alamos National Laboratory, Los Alamos, USA
  - Ohio State University, Columbus, USA
  - Rutgers University, Piscataway, USA

24 Institute, 79 Wissenschaftler

### Wachstum von CVD-Diamanten (1)

- Chemical Vapour Deposition (CVD)-Verfahren
  - Abscheidung von Kohlenstoff-Atomen auf Substrat in speziellen chemischen Reaktoren
  - Polykristalline Struktur
  - Typische Wachstumsrate 1 μm h<sup>-1</sup>
  - Zuerst bis zu 2.6 mm Dicke gewachsen, dann geläppt (abgeschliffen), poliert und mit Laser geschnitten
  - Kommerzielle Lieferanten: Norton (US), DeBeers (UK)
  - Aufbringen von Ohmschen Kontakten durch Sputtern von Cr/Au oder Ti/Au
- Verschiedene CVD-Diamantproben im Vergleich mit einer Siliziumdiode (links unten):



## Wachstum von CVD-Diamanten (2)

- Wachstumsprozeß:
  - Zunächst viele Kristallisationskeime auf der Substratoberfläche
  - Zusammenwachsen der Kristalle zu Türmen
  - Verbreiterung der Kristalle mit zunehmender Dicke
- Ergebnis:



### Wachstum von CVD-Diamanten (3)

- Oberflächen eines CVD-Diamanten (415 µm dick)
  - Substratseite:



- Wachstumsseite:



### Materialeigenschaften

#### • Eigenschaften bei T=300 K

|                                                                                             | Diamant           | Si                   | GaAs                |
|---------------------------------------------------------------------------------------------|-------------------|----------------------|---------------------|
| Ordnungszahl Z                                                                              | 6                 | 14                   | 31, 33              |
| Bandlücke E <sub>g</sub> [eV]                                                               | 5.47              | 1.12                 | 1.42                |
| Intrinsische Ladungsträgerdichte n <sub>i</sub> [cm <sup>-3</sup> ]                         | <10 <sup>3</sup>  | 1.5·10 <sup>10</sup> | 1.8·10 <sup>6</sup> |
| Relative Dielektrizitätskonstante $\epsilon$                                                | 5.7               | 11.9                 | 13.1                |
| Spezifischer Widerstand $\rho$ [ $\Omega$ cm]                                               | >10 <sup>12</sup> | 2.3·10 <sup>5</sup>  | 10 <sup>8</sup>     |
| Beweglichkeit der Elektronen $\mu_e$ [cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ]     | 1800              | 1350                 | 8500                |
| Beweglichkeit der Löcher $\mu_h$ [cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ]         | 1200              | 480                  | 400                 |
| Sättigungsgeschwindigkeit Elektronen $v_s$ [km s <sup>-1</sup> ]                            | 220               | 82                   | 80                  |
| Generationsenergie Elekron-Loch-Paar E <sub>eh</sub> [eV]                                   | 13                | 3.76                 | 4.27                |
| Mittlere Ladungsgeneration durch ein minimal ionisierenden Teilchens $q_p [e \ \mu m^{-1}]$ | 36                | 108                  | 130                 |

- Vorteile des Diamanten:
  - Hohe Bandlücke → geringe intrinsische Ladungsdichte
     → hoher Widerstand → geringer Dunkelstrom → kein
     pn-Übergang erforderlich
  - Hohe Mobilitäten  $\rightarrow$  schnelle Ladungsträgersammlung
  - Niedriges  $\epsilon \rightarrow$  geringe Kapazität  $\rightarrow$  weniger Rauschen
  - Strahlungsfest
- Nachteile des Diamanten:
  - Hohe Generationsenergie → geringe Ladungsträgergeneration durch ionisierende Teilchen
  - Ladungssammlungs-Effizienz < 1</li>

### **Charge Collection Distance (1)**

- Definition:
  - Mittlere Distanz, die Elektronen und Löcher in einem elektrischen Feld (1 V/μm) auseinanderdriften, bevor sie eingefangen werden.
  - $d_c = d_{c+} + d_{c-} = (\mu_+ \tau_+ + \mu_- \tau_-) E \approx \langle Q_c \rangle / (36 \text{ e/}\mu\text{m})$
- Ladungssammlungs-Effizienz:
  - $cce = d_c/d < 1$
- Steigerung von d<sub>c</sub> in den letzten Jahren:



Beste verfügbare Diamantprobe: d<sub>c</sub>=230 μm (432 μm dick)

## **Charge Collection Distance (2)**

• Signal folgt näherungsweise Landau-Verteilung:



• Gemessene Signalverteilung:



### **Charge Collection Distance (3)**

• CVD-Diamant ist inhomogen (turmförmige Kristalle)

#### • Lineares Modell:

- Lokales  $d_c \approx 0$  an der Substratseite
- Lokales d<sub>c</sub> steigt linear in Richtung Wachstumsseite
- Gemessenes d<sub>c</sub> ist Mittelwert über alle lokalen d<sub>c</sub>
- Materialabtragung von der Substratseite her verbessert d<sub>c</sub> bis zu einem Optimum

(bei weiterem Abtrag machen sich Randeffekte bemerkbar, daher sinkt  $d_{\rm c}$  wieder)



### Charakterisierung

#### • Aufbau der Characterization Station:



 Kalibrierung durch Injektion einer Spannungsstufe über einen Kondensator (Q=CU)



# **Bestrahlung (1)**

- Viele **Bestrahlungsstudien** wurden innerhalb RD42 durchgeführt, die wichtigsten davon:
  - Protonen (24 GeV/c)
  - Pionen (300 MeV/c  $\pi^+$ )
  - Neutronen (Energie-Maxima bei 10 keV und 1 MeV)
- Dosis >  $10^{15}$  cm<sup>-2</sup> für jede dieser Bestrahlungen
- Strahlungsschäden, gemessen am Verhältnis der Charge Collection Distance nachher/vorher:

|           | d <sub>c</sub> /d <sub>c0</sub> nach |                                     |  |
|-----------|--------------------------------------|-------------------------------------|--|
|           | 10 <sup>15</sup> cm <sup>-2</sup>    | 5·10 <sup>15</sup> cm <sup>-2</sup> |  |
| Protonen  | 1                                    | 0.6                                 |  |
| Pionen    | 0.6                                  |                                     |  |
| Neutronen | 0.8                                  |                                     |  |

- Verhältnis der Strahlenschäden  $p: \pi^+: n \approx 1:5:2.5$ 
  - Stimmt mit den Nuclear Interaction Cross Sections überein

### Bestrahlung (2)

- Beispiel: Pion-Bestrahlung
- Übereinandergelegte Signalspektren (Landau-Verteilungen) vor und nach der Pionbestrahlung:



- Reduktion im Bereich hoher Signale
  - Mittelwert (d<sub>c</sub>) sinkt stärker als Maximum (MP)
  - Bei Anwendung eines Schwellwertes (zB. 1000 e) zur Teilchendetektion (zB. CMS-Pixel-Design) ist die Effizienz des Detektors kaum von Strahlungsschäden betroffen

# Streifendetektoren

- Detektor mit streifenförmiger Elektrodenstruktur
- Auslese-Chip schließt an Detektor an
- Elektrische Verbindung durch Wire-Bonding
  - Jeder Streifen ist mit einem Auslesekanal verbunden



### Front-End Elektronik für Streifen

- Langsamer Verstärker-IC: VA2
  - 128 Kanäle
  - Peaking Time  $\approx 2~\mu s$
  - Rauschen: ENC = 82 e + 14 e/pF
- Schneller Verstärker mit LHC-Timing: SCT128
  - 128 Kanäle
  - Peaking Time  $\approx$  25 ns
  - Rauschen: ENC = 650 e + 70 e/pF
- 1x1 cm<sup>2</sup> und 2x4 cm<sup>2</sup> Diamantproben wurden gemessen



### **Testbeam-Ergebnisse**

- Bester verfügbarer Diamant in 100 GeV/c Pion-Testbeam
   50 μm Streifenabstand
- VA2-Auslese-Elektronik:



- Cluster Signal-to-Noise:
  - MP SNR=46, Mean SNR=71
- Ortsauflösung:
  - σ = 15 μm (≈ digital)
- SCT-Auslese-Elektronik:
- Cluster Signal-to-Noise:
  - MP SNR=7.2, Mean SNR=10
- Ortsauflösung:
  - $-\sigma$  = 16.5 µm (etwas größer als digital)

# **Pixeldetektoren (1)**

- Detektor und Chip mit gleich großen Pixel-Zellen
- "Sandwich"-Aufbau
- Elektrische Verbindung: Bump-Bonding
  - Jeder Pixel ist direkt mit der Readout-Zelle verbunden
  - Technologisch aufwendig



 Ausleseaufwand viel höher als bei Streifendetektoren, da wesentlich mehr Kanäle (Streifen:Pixel=N:N<sup>2</sup>)

# **Pixeldetektoren (2)**

• 4 verschiedene Pixel-Designs mit zugehörigen Readout-Chips für LHC entwickelt





CMS (125x125 µm<sup>2</sup>)

ATLAS/LBNL (50x536 µm<sup>2</sup>)

- Erster Testbeam mit ATLAS/LBNL Pixeldetektor
  - 97% funktionierende Pixel
  - Digitale Auflösung in beiden Dimensionen ( $\sigma_x$  = 15 µm,  $\sigma_y$  = 140 µm)

## Zusammenfassung & Ausblick

- Charge collection distance mittlerweile 230 μm (Dicke 432 μm), entspricht 8300 e (Mean) bzw. 6500 e (MP)
- Strahlungsfestigkeit gezeigt f
  ür Pionen, Protonen und Neutronen jeweils ≥ 10<sup>15</sup> cm<sup>-2</sup>
- Streifendetektoren erfolgreich getestet
  - Langsame Elektronik (VA): MP SNR=46,  $\sigma$ =15  $\mu$ m
  - Schnelle Elektronik (SCT): MP SNR=7.2,  $\sigma$ =16.5  $\mu$ m
- Erster ATLAS-Pixeldetektor voll funktionsfähig
- Zukünftiges Programm:
  - Weitere Erhöhung der Charge Collection Distance
  - Weitere Vergrößerung der Detektorfläche
  - Aufbau und Test von Pixeldetektoren
  - Homogenitätsstudien von CVD-Diamanten auf 10 µm-Skala (bereits begonnen mit 100 µm)